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A brief history of DNA sequencing

New biological insight

Seeded technological revolution: high-
throughput sequencing

Cost per Raw Megabase of DNA Sequence

Moore's Law

e Completed in 2003 at a cost of $3 billion
and 10 years of labor and planning

e First time we've determined the
sequence of a large genome

XPRIZE: $10 million for _
100 genomes @ $1,000 each : mﬁii'iﬁh”.ﬂ’s"tiﬂt‘ie"“e

genome.gov/sequencingcosts

XPRIZE cancelled:

1] H ”
OUtpaced by Innovatlon 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

http://www.genome.gov/sequencingcosts/



A brief history of DNA sequencing

Throughput Length Quality Costs
IOW-thrOUghpUt h|gh cost

Sanger

454/Roche 750 Mb/day 1072-10"* ~20$/Mb

lllumina

Now 250nt, $.05/MB

SOLID

Helicos

Kercher et al., Bioessays (2010).



A revolution in biology

e HTS has changed the way that much of
biology is done today

New (or rebranded) fields

New experimental methods
of study

Targeted resequencing
Whole-genome sequencing
Exome sequencing

Genomics
Transcriptomics
Metabolomics

ChlP-seq Microbiomics
RNA-seq Toxicogenomics
MeDIP-seq Epigenomics
CLIP-seq Interactonomics
ChIRP-seq Circadiomics
Hi-C

ChIA-PET




HTS (already) has real impact

e Clinical Impact

Discovery of inheritable genetic disorders
Cancer biology (identify cancer subtypes)
Evolution and spread of infectious diseases
Prenatal diagnostics

Now transitioning into clinical laboratory
Lead to personalized therapies

O O O O O O

e Basic Biology
o (Gene expression levels
o ldentify regulatory network structure
o Elucidate fundamental biological processes
m find promoter TATA binding, splicing mechanisms, the
drivers of cellular state/stem cell “stemness”



Limitations of HTS methods

Throughput Length Quality Costs You can’t trust 1/100 bases

We all wish the error rate

Sanger :
were uniform

All kinds of hidden biases
454/Roche 750 Mb/day based on the sequence
composition (GC-content,
strand-bias, positional bias,

lllumina
But we have much more
data. How can we best use
it all?

SOLID

Helicos




Computational biology to the rescue!

Detect and correct
errors and biases

See the biology beyond
the letters




Harness HTS read
mapping uncertainty to

Improve analysis
methods




Resolve ambiguity through Machine

Lea n i n GATATAAACT
g /\

ACGTGATATAAACTGCGTCGGATATAAACTACTCTAGG

e Most genomes are riddled with repetitive

sequence

o Variable lengths (six to several thousand bp)

o Up to 66% of the Human genome*™

o  ~30% of reads map ambiguously**

o Ambiguous reads often excluded completely or some
subset are included at random

AREM: Aligning Reads by Expectation-Maximization

General framework for resolving repeats; we
demonstrate how with ChlP-seq data

*Koning et al. PLOS Genetics 7 (12): €1002384 **Langmead et. al. Genome Biology 10 (2009) R25



* Cross-link protein to DNA
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Shear DNA strands
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Add bead-attached antibodies
to immunoprecipitate

target protein

wikipedia.org/wiki/ChlP-sequencing




Qing Zhou, PNAS 16438-16443



Identifying Peaks

e Look for regions with many reads piled
together

Treat as Nx1 dataset (N is in 10’s of milions)
Smooth via kernel density

Peak model

—— Forward tags A
—— Reverse tags ’
—— Shifted tags

ChIP reads

d=114

T T T T T T
—-400 —200 0 200 400 600
Distance to the middle

Control reads p= e mEEEL L MACS: Zhang et al, 2008



A mixture model for ChlP-Seq

2 un-ChlP’ed backgrounc
g T I_I
—_ e

K enriched regions

)

e Each read has some probability of belonging
to each of the peak and background regions

e |dentify best peak configuration by
maximizing read likelihood



A mixture model for ChlP-Seq

AAAGTCTATCCCAGGCTC
2
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e \Which region is the most likely source of the
ambiguous reads?

e The alignment with highest likelihood

e (Not so simple if we're unsure where the K
enriched regions are located)



Maximize Likelihood via E-M
= arg max p(riy,ro,---ryn;0)

(;)\

Overall problem: find best peak configuration

p(r;) = Z p(rilu; =k, z; = J)p(u; = k)p(z; = J)

u; eK.,z;€Eny

™~

Consider all possible peak sources and all possible alignments

/

1 Maximization

—-Q(t)(:i _ j‘R) _ —P( vy = ] ()(t))P( = J) (With alignments fixed, find

(' , best regions)
. /

e+l — arg 111&\ ZZQ(” z; = j|R) log P(r;|z; = j,0)

- 1=1 7=0

Expectation (With regions fixed, update alignments)




Expectation Maximization in action

Expectation
Maximization
r2 r3
: M

E-M is a machine learning method with many
applications, especially in mixture models.



Accounting for non-uniform control

e Define alignment likelihood as poisson
survival of peak vs. unenriched background

ChIP reads

d )\k
oY) — oA A
= e o k=0
1
p(rilzi = j,u; = k) = max (— log,,(1 — g(z,A)), m)




Test datasets

e We used motif presence to indicate peak quality

e Cohesin - structural protein, known to bind repetitive regions
of the genome

— D474 sub-telomeric repeat associated with Facioscapulohumeral
Disorder *

— Cohesin often co-localizes with CTCF (motif in 80% peaks from
mouse and human)

e Srebp-1-traditional transcription factor
— Contains a well-characterized binding motif

{QCACQA NG ]QI J:J TA T

0" e T W ® M @D o®m e - N® T 8 AL B R SR - BT - B 4

CTCF binding motif Srebp-1 binding motif



AREM shows better performance in

repeat regions than other peak finders

Cohesin

Method Alighments Peaks | New FDR Motif Repeat

MACS -- 2,368,229| 18,556 --- 2.80%| 81.67%| 56.55%
SICER -- 2,368,229 17,092] --- 12.71%| 82.55%| 70.42%
AREM 1 2,368,229 19,012 --- 1.90%| 81.32%| 55.30%
AREM 10 7,616,647 19,881 1,404 3.80%| 81.04%, 58.88%
AREM 200 12,312,878 19,935 1,517] 3.70%| 80.88%| 59.66%
AREM 40  20,527,010] 19,863] 1,546/ 3.20%| 80.93%, 60.34%
AREM 80| 34,537,311 19,820[ 1,538 2.90% 80.73%| 60.91%

Allow for sequences with one alignment.

Allow for sequences with up to 10-80 possible alignments.

A

8% more peaks, similar FDR,
many peaks in repeats!



AREM shows better performance in

repeat regions than other peak finders

1.

2.

Srebp-1

Method Alighments Peaks | New FDR Motif Repeat

MACS -- 10,482,005 721 --- 4.85%| 46.60%| 53.95%
SICER -- 10,482,005 622 --- 9.0%| 59.00%| 77.33%
AREM 1 10,482,005 1,438 --- 8.0%| 39.08%)| 53.47%
AREM 10, 28,347,869 1,815 262 10.5%| 39.22%| 56.04%
AREM 20| 44,493,532 1,748 227 8.0%| 39.95%| 55.97%
AREM 40, 72,453,642 1,685 248 8.2%| 40.34%)| 56.46%
AREM 80| 118,744,757 1,695 272 7.3%| 40.66%| 56.73%

Allow for sequences with one alignment.

Allow for sequences with up to 10-80 possible alignments.

5% more peaks called at lower FDR




Availability

[ s e Realigns and calls peaks:
12 million alignments
Identify K regions enriched .
[ with alignments ] < 20 mInUteS
—— < 1.6 GB RAM
E Step: M Step: ‘11: .
Update alignment Update peak 120 mllllon allgnments
probabilities from enrichment from .
enrichment alignment probabilities < 30 m|nUteS

\[ }/ < 6 GB RAM
Check convergence

e AREM is a python package

[Calltreatmentpeaks] [ Call control peaks ] ) Downlgad from glthUb

[\/] com/uci-cbcl/arem
Calculate FDR




AREM can be applied in other
contexts

e Repeat problem plagues all of HTS analysis
e AREM framework can be applied to other
analysis methods

o RNA-seq: re-align ambiguous reads to the most
abundant transcripts

o SNP/variant calling: re-align ambiguous reads to the

genotypes that the reads agree with
o Many other possibilities






Scaling up: multiple ChIP datasets
from multiple cell types

Determine binding site

dynamics by performing the
® same ChlIP experiment at

Multipotential hematopoietic -:E-;'. d |ffe re nt tl me p0| ntS/Cel I StageS
(He;tce)mcy;i':ast) RN
¢ 3 k| .
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Common myeloid progenitor Common lymphoid progenitor s
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Scaling up: multiple ChIP datasets
from multiple species

Nine ChIP-seq
experiments

CTCF Histone modifications (not transcription factors)
H3k27me3 / \
H3k36me3 =
H4k20mel
H3k4mel
H3k4me?2
H3k4me3

H3 k27ac HISTONE
H3k9ac

HISTONE TAIL

HISTONE TAIL

DA acopssibla, gena achive

|
DOMA inacoessible, gena inactive

wikipedia.org/wiki/Epigenetics



Scaling up: multiple ChIP datasets
from multiple species

Nine ChiP-seq

experiments Nine human cell types

» CTCF * embryonic stem cell (H1 ES)

* H3k27me3 e erythrocytic leukaemia cells (K562)

* H3k36me3 » B-lymphoblastoid cells(GM12878)
 H4k20mel  hepatocellular carcinoma cells (HepG2)
* H3k4mel « umbilical vein endothelial cells (HUVEC)
» H3k4me2 » skeletal muscle myoblasts (HSMM)

* H3k4me3  normal lung fibroblasts (NHLF)

* H3k27ac » normal epidermal keratinocytes (NHEK)
* H3k9ac « mammary epithelial cells (HMEC)

Ernst et al, Nature, 2011



Histone mark combinations indicate
gene function

“Active Promoter” “Active transcription”

H3K4me2 / H3K36me3 /
H3K4me3 H3K79me2

Acetylation

H2A.Z

Exon | Intron | Exon
— @
/ H3K4mel
H3K4me2
/ H3%

“Active Enhancer”
—

\_/_——| Exon | Intron | Exon

H3K9me2 H3K27me3
“Repressed Gene”

Zhou et al, Nature Rev. Gen., 2011




Binding dynamics across cell types

_ H3K4me3 ’ \
ES cells | 1i3ko7mes

e ad
NPCs
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Olig1: Neural transcription factor

Polm: DNA polymerase (gene needed in all cell types)

* ES cells: Embryonic stem cells
* NPCs: Neural progenitor cells
* MEFs: Embryonic fibroblasts (muscle)

genes [;epressea in muscle Cﬁlls

-
e
N
o

Neurogl: Neurogenesis transcription factor
Pparg: Adipogenesis transcription factor
Fabp7: Neural progenitor marker

Mikkelsen et al., Nature 2007



Can we automatically

learn biology’s histone

Nine ChIP-seq

experiments

« CTCF

« H3k27me3 » erythrocyfic leukaemia cells (K562)

* H3k36me3 » B-lymphoblastoid cells(GM12878)

* H4k20mel . hepatocellula corcinoma cells (HepG2)

H3k4mel

endothelial cells (HUVEC)
myoblasts (HSMM)
oblasts (NHLF)
keratinocytes (NHEK)
elial cells (HMEC)

What does the data tell
us about cell
differentiation?

Ernst et al, Nature, 2011



Unsupervised Learning

e Family of machine learning methods to
recognize patterns in datasets

o Includes K-means, hierarchical clustering, self-
organizing maps, and many other methods

H3K4me2 H3K36me3

Ezsttﬂfiin KTIme? Hidden Markov Model can capture spatial transitions
H2A.Z
@ We build on a previous
“ChromHMM” model
| Exon

/ __/l Exon | Intron

z::ll: .—}22 _...—>zg' _...ézT

/ / e
Histone ma v o e o /’ ) /

1 1 a1
€Iy Ia I T

—~—



What about multiple cell types?

1 , 1 1 1
3 J) NN T S S - .
ES cells Z1 Z3 — % — ZT
//1 \ Vet p e A .
v v N v
:I‘i :P":_TEI I i xT T
1 , 1 1 1
2l —( 1 — — zl — — 2z
NPCs ) 2 ‘ -
e F— Vet //1 \ A .
v v N v
T T3 Iy T

xl.j : observed histone marks (position 1, species j)
z/: hidden chromatin state (to be inferred)



A new “TreeHMM?” for lineages

_ o — - o
Connect / /
multiple cell ol 7L

: L
types in a tree

\ 2 — Z-%

Connect adjacent regions
of the genome



TreeHMM Recap

Data: M x N x L matrix of binary histone mark
presence

o M species, related to each other by a tree
o N contiguous genomic regions

o L different histone marks

Use a Tree Hidden Markov Model to do
unsupervised learning

We are given K, the number different histone
states to find

o K x L “emission” matrix

o Kx K “transition” matrix for root species

o Kx K x K “transition” matrix for other species




Inference in TreeHMM

e Just one problem: Inferring the hidden state
In this model is intractable when K or M is
large (K'VI state space)

e \We use variational methods to
approximate the model
o Choose a tractable family of surrogate models, then

optimize them to look like the more complicated

model ., WEEEENC WENNSEN. . WENNREN W

Mean field: Optimize single nodes separately // e / /
" e "
;1’} :1?% ;1‘11_ ;r%
Structured mean field:

Optimize complete HMM chains separately

Loopy belief propagation



How good

are the approximations?

Structured mean field —6.0 x10*
approximates the exact
model very well P e
\ —
~7.0 \ .....
> [ e
o |70
g “."'- _,""i_‘.'_h.
W -7.5H, - ==~
L] - .-
I.%, fj - = = - - - -
i s - =~ - -
3 f Tm=-
—-8.0pf
;:
1
! -- LBP
I
-85 MF |
SMF
— Clique
=905 10 20 30 40 50
Iteration

K=5, very small dataset



H3K27me3
H3K36me3
H4K20mel
H3K4mel
H3K4me?2
H3K4me3
H3K27ac
conserved
conserved
non-exon
non-coding
genes

Low Signal

Polycomb
Repressed

Low Signal

Coding Gene

Insulator

Transcriptional
Transition

Low Signal

Strong
Enhancer

Enhancer

Low Signal

Weak
Im\r\l'ﬁr

Transcriptional
Elongation

Wear
Enhancer

Strong
Enhancer

Repeat/CNV

Active
Promoter

Polsca
Promoter

Weak
Enhancer

Emission probabilities Fold Enrichment



Horizontal parent state

Spatial transitions between states

® Vertical parent specific transition matrix
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Validation and comparison

e Do our predicted states have any grounding
in real biology?
e \alidate them using a different dataset:

transcription factor ChlP-seq
o Record number of recovered TF binding sites

o Record fold enrichment vs. random overlap with TF
binding sites
e Compare vs. ChromHMM (like our model,
but no tree component)



40

- B TreeHMM
Predicted 35
B ChromHMM
Promoters 30
25 -
20 -
. 15 -
Recovered sites
10 -
(thousands)
5 .
O -
45 We predict fewer
sites with better
40 accuracy
35

0
5 -
20 -
15 -

Fold enrichmenti

Taf1 is part of all cells’

Tafl Oct4 KIf4



. B TreeHMM
Predicted 3
B ChromHMM
Enhancers 3o
25
20
15

Recovered sites
(thousands) *°

We predict more site
14 at better or similar
accuracy

Fold enrichment

Oct4 KIf4 p300 Nanog Sox2



TreeHMM take home messages

e None of this would be possible without
interesting data and lots of it

o |In several organisms, there are many new datasets
doing comprehensive surveys of biological function

e Extending models toward real biology is

worth it
o Can lead to improved accuracy and new insights

o Machine Learning has tools for many more models
than now employed in biology



reference genome?

Distributed database for
S embly

Algorithms




No reference genome?

e For most analyses, we use the standard

“reference” genome

o Many organisms don’t have a reference

o Others have a poor quality reference

o Some samples are too different from the reference

m Cancer genomes are genetically unstable,
subject to “"genome shattering”

e Low cost of sequencing makes it feasible to
do de novo assembly using HTS reads
o Human genome cost ~$3 billion and 10 years,
finishing in 2003
o Done today in a few weeks for a few thousand

Anllarce



Genome Assembly
(1st Approximation)
p |

hundreds of millions
of fragments

High-Throughput
Sequencing



. THEN A
¢ MIRAC LE

OCCURS .

Overlap Graphs

. ..ACTGAATCTAGGTCTGCGT
GTCTGCGTACCCTACGTCTGACTGC CGCGGCAA TCTTTGACCA.
CGCGGCAAACGGCTAGCTGTGTTTTTACT TCTTTGA

TCTTTGATTC.

e Find prefix/suffix overlaps between all reads

e Form a graph where the reads are nodes
and overlaps are edges

e Find a Hamiltonian path through the graph
(touching all nodes once)



7> MIRACLE

OLCURS .-

De Bruijn Graphs
Repeated kmers are collapsed

.. %g. £ ;EAAZ EETéﬁGC / into a single node
e Nee
-O0—0O

. .CCTCTAGGGTGC

e Form a graph where all Kmers of the reads
are nodes and edges correspond to
shared K-1mers

e Find an Eulerian path through the graph
(touching all edges once)



Pros and Cons

Overlap Graph: De Bruijn Graph:

e Requires comparison e Scales with complexity of
between all reads genome, not # of reads”™

e Hamiltonian path is e Many errors show as
harder than Eulerian unique graph structures

e Errors detected via e Error identification is
consensus sequences critical

e Can handle repeats e Without additional work,
shorter than read length handles only repeat < K

e Mostly suited for a few, e Well-suited for many
long reads short, low-quality reads

* except for errors...



Our goal:
scalable de Bruijn graph assembly

Algorithm Genome Size

Small Medium Large
Velvet a4 v X
ABySS v v v
Ray v v v
Contrail X v v
Genomix v a4 a4

> If you have

enough memory



Interlude: a different revolution

e Storage is cheap and everything is recorded

o Social network data, browsing/shopping history,
search terms, retail information
e Traditionally, all this would be kept in large
databases for easy query
o Now, the data can’t fit on one machine

e Demand for scalable alternatives

o Google revealed MapReduce and GFS papers

(internet scale)
o Hadoob (open source) soon followed

In 2013,
=/(a/a/a 50% of Fortune 50
h3cl SN facebook b of Fortune

YAHOO! amazoncom




Scalable algorithms need scalable frameworks

e Hyracks: efficient and flexible alternative to
Hadoop

o Seamless use of available memory and disk space
o Additional operators, index structures
o Brings relational DB concepts to the cloud

e Pregelix: scalable graph algorithms
o Hyracks-based open source Pregel implementation
o Handles all scheduling, network,

message handling, etc
o Think like a vertex

50
f L 1 L] L) T
0.5 1 15 2
millilons of points

http://www.cs.washington.edu/mssi/2010/MikeCarey.pdf K-means CIUStermg in the cloud



Hyracks stack

Hyracks
AsterixQL
1 Genomix
HiveQL Piglet ... Graph algorithms Build graph
Asterix <L
Data
Mgmt. o Other HLL Hadoop Pregel IMRU
SYStem Alvesterix Comp“erS M/R JOb JOb JOb

Hyracks Job

$

Algebricks Hadoop M/R .
Algebra Layer Compatibility bl

Hyracks Data-parallel Platform

[ Filesystem abstraction: Shared-nothing, HDFS, NFS, etc. ]




-

A
&y

T rbps/

.H'

[}

/

De Bruijn graph of the
small genome of E. coli
after error correction

Chaisson et al., Genome Research 2009



Sequencing Errors (Bubble Merge)

ATGGAAGTCGCGGAATC

sequence
ATGGAAGTGGCGGAATC

Vo U/ n’e, N,
& Y8 as® %t %, 8 s =
e il NVa\
oo

vy o, Ve Ve
\\. N ‘0.\\

e Breadth-first search identifies common paths
e Extract and compare path sequences
e \When paths are similar, prune “worst” one



Graph Compression

e \We can collapse long chains of nodes into

single nodes representing long chains
o All later operations will take fewer iterations

VY 9-0-0-0
U

e Use a randomized algorithm to coordinate
nodes



Graph Compression

e \We can collapse long chains of nodes into

single nodes representing long chains
o All later operations will take fewer iterations

N

e Use a randomized algorithm to coordinate
nodes



Scaffolding

e Use the reads to guide a growing path

candidate path reads have mutual
overlap with walk

/_\,, —_—
\_/ , —
“high-confidence” region
1 1
— 1 — DPi12: D22

1
Pig — =+

Check all candidate
paths out to a certain
distance D

N
\
\
—

s—>’w1—>w2———>f pég__>

2 2
/ C2 > P12 > Pz —
single error read connects
the walk incorrectly




Scaffolding

e Use the reads to guide a growing path

One set of edges must dominate the other p%3 —_ e

for the walk to proceed

e

1 .1
— Pi19: P29

AN

1

S — W) — Wy — Dgg — =+

2 2
— Pig — P13 >



Timings: Small Genomes

Hadoop-based Contrail lags behind

Velvet Ray Contrail [l Genomix [l Genomix + Scaffold
O
10,000
®
5,000
o ]
©
E °
= 7~ l--. .v"
5 O o
E.
T 1,000
o
o
S

<
o
o
ol
®

Ray is another parallel framework
for de Bruijn graph assembly

log10(Input Size)



With Human Genome

] _ Genomix has no
same figure... with a larger genome memory constraints

though having it will
speed up computation

Velvet Ray Contrail |l Genomix [l Genomix + Scaffold
o
100,000
E 10,000 : Ray requires ~450GB RAM
E across machines
=
g a e}
P w :
1,000 p Velvet is a no-show...
Some groups reported
assembling a human
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Assembly Accuracy

N5y | SNPs | Indels <5bp / > 5bp | Inv./Rel/Trans. Time
Rhodo (4.6MB genome, 101bp SE reads, 180x coverage)
Velvet 4312 | 899 324 /6 1/2/2 628 (1 CPU)
Ray 3800 | 295 118 /4 0/2/3 2,347 (8 CPU)
Genomix | 3878 | 573 138 / 4 2/3/9 11,402 (8 CPU)
E. coli (4.6MB genome, 36bp SE reads, 80x coverage)
Velvet 8735 | 24 0/0 0/2/0 220 (1 CPU)
Ray 12425 | 37 1/1 0/1/0 904 (8 CPU)
Genomix | 10756 | 9 0/0 8/6/0 2,452 (8 CPU)
Staph (2.9MB genome, 101bp SE reads, 90x coverage)
Velvet 22361 | 100 9/4 0/2/0 113 (1 CPU)
Ray 3718 | 49 4/2 0/4/0 735 (8 CPU)
Genomix | 7881 7 3/1 3/3/0 1,176 (8 CPU)




Assembly is tough, but at least you
can scale up!

e Assembly was once relegated to small
bacterial genomes

e Dropping costs and better tech are making

assembly available to much larger genomes
o Important for understudied organisms

o Important for cancers and other diseases where
genome structure is affected

e Don't need huge servers w/ beefy RAM
o Small clusters will do the job (rent them on EC2!)



Recap

e Three algorithms
leveraging HTS data in
different ways

o AREM enables analysis in repetitive regions of the
genome

o TreeHMM synthesizes multiple datasets in related cell
types to better annotate the genome

o (Genomix applies when the reference is inadequate or
unavailable and provides a scalable solution to assembly

e HTS requires solid computational models and algorithms to
be successful

Algorithms



Exciting time to be in biology!

e Costs continue to drop, quality is increasing

e New experimental methods are revealing
comprehensive, in-depth biology at scales
we’'ve never seen before

e Computational methods are required to
overcome errors, but also to model biological
realities
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Method # Alignments | # Peaks | Peak Bases | FDR | New Peaks | Motif | Repeat
Cohesin

MACS 2,368,229 18,556 9,546,641 2.8% — 81.67% | 56.55%
SICER 2,368,229 17,092 | 17,374,108 | 12.71% — 82.55% | 70.42%
AREM 1 2,368,229 19.012 9,353,567 1.9% — 81.32% | 55.30%
AREM 10 7,616,647 19,881 | 10,225,479 | 3.8% 1,404 81.04% | 58.88%
AREM 20 12,312,878 19,935 | 10,531,465 | 3.7% 1,517 80.88% | 59.66%
AREM 40 20,527,010 19.863 | 10,744,836 | 3.2% 1,546 80.93% | 60.34%
AREM 80 34,537,311 19,820 | 10,972,796 | 2.9% 1,538 80.73% | 60.91%
Srebp-1

MACS 10,482,005 721 495,968 4.85% — 46.60% | 53.95%
SICER 10,482,005 622 963,778 9.0% — 59.00% | 77.33%
AREM 1 10,482,005 1,438 880,284 8.0% — 39.08% | 53.47%
AREM 10 28,347,869 1,815 996,346 10.5% 262 39.22% | 56.04%
AREM 20 44,493,532 1,748 959,646 8.0% 227 39.95% | 55.97%
AREM 40 72,453,642 1,685 983,459 8.2% 248 40.34% | 56.46%
AREM 80 | 118,744,757 1,695 987,746 7.3% 272 40.66% | 56.73%

Table 2.1: Comparison of peak-calling methods for cohesin and Srebp-1. Three peak
callers (MACS, SICER, and AREM) were run on both datasets. For AREM, the maximum
number of retained alignments per read is varied (from 1 to 80). The total number of peaks
and bases covered by peaks is reported as well as the FDR by swapping treatment and
control. For both datasets, AREM’s minimum enrichment score was fixed at 1.5 with 20
maximum alignments per read. For comparison, the motif background rate of occurence
was 4.5% (CTCF) and 27% (Srebp-1) in 100,000 genomic samples, sized similarly to Rad21
MACS peaks and Srebp-1 MACS peaks, respectively.
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How many chromatin states?

Apply tree-HMM to the Broad dataset
(9 chromatin modification in 9 cell types):
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Model selection: AIC (Akaike information criterion), BIC (Bayesian information criterion)



A Simple Lineage Tree

skeletal umbilical

mammary
muscle epithelial
myoblasts cells

normal
epidermal
keratinocytes

erythrocytic
leukaemia

veln
endothelial
cells




ChromHMM State

m m — o
9] ] 9] - N m o o o€ c
E € E ¢ 29 2 & o _ a > 58 T
~ © O S S E 9~ @ o £ c Cd onw of
w o~ m ~ < < < ~ o S SR g 7Y co VYo
(@] ¥ pv4 ¥ ¥ ¥ ¥ ¥ ¥ c .m c CC - < c o
b m m < m m m m m o -~ ) og o% &
I I I I I I I I o + O O oD c

CTCF

H3K27me3|
H3K36me3|

HaK20mel|

H3K4mel

H3K4me2

H3K4me3
H3K27ac| ~ @ _

Emission probabilities Fold Enrichment

Low Signal

Polycomb
Repressed

Low Signal
Coding Gene

Insulator

Transcriptional
Transition

Low Signal

Strong
Enhancer

Enhancer

Low Signal

Weak
Promoter

Transcriptional
Elongation
Weak
Enhancer

Strong
Enhancer

Repeat/CNV

Active
Promoter

Poised
Promoter

Weak
Enhancer



o o (=] — — 2.”5”1 H
o o o — — : ~
o o o o~ — —
o o o o o n
o o o o~ <t o
[¥=}
o — o ~ ~ s —
o o — % n o
— o~
o o b I — “ -+
— ~ o o m . o . © — o n
~ : : %
o — o 2.6 Q ©° o <
@ ~ o un = (] o~ — o (s3] 5] ~
— — — — — — —

31015 WWHWOoIYD

10 11 12 13 14 15 16 17 18

9
Overlap with TreeHMM State

8

7

|joJuo)

JBHAEH

IBLTAEH

EIWPNEH

COWPHEH

TRWPAEH

TRWODAYH

EIWIENEH

EIWLTHEH

4210



Promoters

Factor treeHMM ChromHMM
All Unique All Unique
Tafl | 32,069 (41.6x) 1,489 (15.2x) | 35,082 (26.0x) 4,502 (6.7x)
Octd | 4,980 (23.8x) 231 (8.7x) 6,932 (19x) 2,183 (12x)
Klf4 2,622 (18.1x) 105 (5.7x) 3,819 (15.1x) 1,302 (10.3x)
p300 141 (1.0x) 16 (0.9x) 1,597 (6.4x) 1,472 (11.8x)
Nanog 1,556 (1.5x) 227 (1.7x) 8,650 (4.7x) 7,321 (7.7x)
Sox2 412 (1.6x) 63 (2.0x) 2,509 (5.7x) 2,160 (9.8x)
Enhancers
Factor treeHMM ChromHMM
All Unique All Unique
Tafl 8,095 (2.5x) 4,293 (4.4x) 5,611 (2.2x) 1,809 (5.3x)
Oct4 3,914 (4.5x) 2,060 (7.8x) 2,274 (3.3x) 420 (4.5x)
Klf4 2,143 (3.6x) 1,294 (7.1x) 1,003 (2.1x) 154 (2.4x)
p300 7,253 (12.2x) 1,517 (8.4x) | 5,861 (12.2x) 125 (2.0x)
Nanog | 39,829 (9.1x) 7,941 (6.0x) | 33,561 (9.6x) 1,673 (3.5x)
Sox2 9,786 (9.4x) 2,185 (6.9x) 7,952 (9.5x) 351 (3.1x)




