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A brief history of DNA sequencing

● Completed in 2003 at a cost of $3 billion 
and 10 years of labor and planning

● First time we’ve determined the 
sequence of a large genome

New biological insight

Seeded technological revolution: high-
throughput sequencing

http://www.genome.gov/sequencingcosts/

XPRIZE: $10 million for
100 genomes @ $1,000 each

XPRIZE cancelled: 
“Outpaced by Innovation”



Kercher et al., Bioessays (2010).

A brief history of DNA sequencing

low-throughput high cost

Now 250nt, $.05/MB



A revolution in biology

Targeted resequencing
Whole-genome sequencing
Exome sequencing
ChIP-seq
RNA-seq
MeDIP-seq
CLIP-seq
ChIRP-seq
Hi-C
ChIA-PET

● HTS has changed the way that much of 
biology is done today

New experimental methods New (or rebranded) fields
 of study

Genomics
Transcriptomics
Metabolomics
Microbiomics
Toxicogenomics
Epigenomics
Interactonomics
Circadiomics



HTS (already) has real impact
● Clinical Impact

○ Discovery of inheritable genetic disorders
○ Cancer biology (identify cancer subtypes)
○ Evolution and spread of infectious diseases
○ Prenatal diagnostics
○ Now transitioning into clinical laboratory
○ Lead to personalized therapies

● Basic Biology
○ Gene expression levels
○ Identify regulatory network structure
○ Elucidate fundamental biological processes

■ find promoter TATA binding, splicing mechanisms, the 
drivers of cellular state/stem cell “stemness”



Limitations of HTS methods
You can’t trust 1/100 bases

We all wish the error rate
were uniform

All kinds of hidden biases
based on the sequence
composition (GC-content,
strand-bias, positional bias,

But we have much more 
data. How can we best use 
it all?



Computational biology to the rescue!

Detect and correct
 errors and biases

See the biology beyond
the letters



AREM

Harness HTS read 
mapping uncertainty to 

improve analysis 
methods



Resolve ambiguity through Machine 
Learning

● Most genomes are riddled with repetitive 
sequence
○ Variable lengths (six to several thousand bp)
○ Up to 66% of the Human genome*
○ ~30% of reads map ambiguously**
○ Ambiguous reads often excluded completely or some 

subset are included at random

*Koning et al. PLOS Genetics 7 (12): e1002384

AREM: Aligning Reads by Expectation-Maximization

General framework for resolving repeats; we 
demonstrate how with ChIP-seq data

**Langmead et. al. Genome Biology 10 (2009) R25

ACGTGATATAAACTGCGTCGGATATAAACTACTCTAGG

GATATAAACT



wikipedia.org/wiki/ChIP-sequencing



Qing Zhou, PNAS 16438–16443Qing Zhou, PNAS 16438–16443



Identifying Peaks

• Look for regions with many reads piled 
together

Treat as Nx1 dataset (N is in 10’s of milions)
Smooth via kernel density

ChIP reads

Control reads

Non-uniform control…
“Strand” bias

MACS: Zhang et al, 2008



A mixture model for ChIP-Seq

K enriched regions

un-ChIP’ed background

● Each read has some probability of belonging 
to each of the peak and background regions

● Identify best peak configuration by 
maximizing read likelihood



A mixture model for ChIP-Seq
AAAGTCTATCCCAGGCTC

● Which region is the most likely source of the 
ambiguous reads?

● The alignment with highest likelihood
● (Not so simple if we’re unsure where the K 

enriched regions are located)



Maximize Likelihood via E-M

Consider all possible peak sources and all possible alignments

Overall problem: find best peak configuration

Expectation (With regions fixed, update alignments)

Maximization
(With alignments fixed, find 

best regions)



Expectation Maximization in action

r1
r2 r3

Expectation

Maximization

E-M is a machine learning method with many 
applications, especially in mixture models.



Accounting for non-uniform control

• Define alignment likelihood as poisson 
survival of peak vs. unenriched background

ChIP reads

Control reads



Test datasets
• We used motif presence to indicate peak quality

• Cohesin – structural protein, known to bind repetitive regions 
of the genome
– D4Z4 sub-telomeric repeat associated with Facioscapulohumeral 

Disorder *

– Cohesin often co-localizes with CTCF (motif in 80% peaks from 
mouse and human)

•  Srebp-1– traditional transcription factor

– Contains a well-characterized binding motif

Srebp-1 binding motif

* Zeng et. al. PLoS Genetics, 5(7) 2009 

CTCF binding motif



Method  Alignments Peaks New FDR Motif Repeat

MACS --- 2,368,229 18,556 --- 2.80% 81.67% 56.55%

SICER --- 2,368,229 17,092 --- 12.71% 82.55% 70.42%

AREM 1 2,368,229 19,012 --- 1.90% 81.32% 55.30%

AREM 10 7,616,647 19,881 1,404 3.80% 81.04% 58.88%

AREM 20 12,312,878 19,935 1,517 3.70% 80.88% 59.66%

AREM 40 20,527,010 19,863 1,546 3.20% 80.93% 60.34%

AREM 80 34,537,311 19,820 1,538 2.90% 80.73% 60.91%

AREM shows better performance in 
repeat regions than other peak finders

2

1. Allow for sequences with one alignment.

2. Allow for sequences with up to 10-80 possible alignments.

1

Cohesin

8% more peaks, similar FDR, 
many peaks in repeats!



Method  Alignments Peaks New FDR Motif Repeat

MACS --- 10,482,005 721 --- 4.85% 46.60% 53.95%

SICER --- 10,482,005 622 --- 9.0% 59.00% 77.33%

AREM 1 10,482,005 1,438 --- 8.0% 39.08% 53.47%

AREM 10 28,347,869 1,815 262 10.5% 39.22% 56.04%

AREM 20 44,493,532 1,748 227 8.0% 39.95% 55.97%

AREM 40 72,453,642 1,685 248 8.2% 40.34% 56.46%

AREM 80 118,744,757 1,695 272 7.3% 40.66% 56.73%

AREM shows better performance in 
repeat regions than other peak finders

2

1. Allow for sequences with one alignment.

2. Allow for sequences with up to 10-80 possible alignments.

1

Srebp-1

5% more peaks called at lower FDR



• Realigns and calls peaks:
12 million alignments

< 20 minutes

< 1.6 GB RAM

120 million alignments 

< 30 minutes 

< 6 GB RAM

• AREM is a python package

• Download from github.
com/uci-cbcl/arem

Align reads

Identify K regions enriched 
with alignments

E Step: 
Update alignment 
probabilities from 

enrichment

M Step: 
Update peak 

enrichment from 
alignment probabilities

Check convergence

Call treatment peaks Call control peaks

Calculate FDR

Availability



AREM can be applied in other 
contexts

● Repeat problem plagues all of HTS analysis
● AREM framework can be applied to other 

analysis methods
○ RNA-seq: re-align ambiguous reads to the most 

abundant transcripts
○ SNP/variant calling: re-align ambiguous reads to the 

genotypes that the reads agree with
○ Many other possibilities



AREM

Unsupervised clustering 
of multiple genomes for 

improved biological 
insight

TreeHMM



Scaling up: multiple ChIP datasets 
from multiple cell types

Determine binding site 
dynamics by performing the 
same ChIP experiment at 
different timepoints/cell stages

Integrate multiple 
datasets for 
biological insight



• CTCF
• H3k27me3
• H3k36me3
• H4k20me1
• H3k4me1
• H3k4me2
• H3k4me3
• H3k27ac
• H3k9ac

Scaling up: multiple ChIP datasets 
from multiple species

Histone modifications (not transcription factors)

wikipedia.org/wiki/Epigenetics

Nine ChIP-seq 
experiments



Nine ChIP-seq 
experiments

• CTCF
• H3k27me3
• H3k36me3
• H4k20me1
• H3k4me1
• H3k4me2
• H3k4me3
• H3k27ac
• H3k9ac

Nine human cell types

• embryonic stem cell (H1 ES)
• erythrocytic leukaemia cells (K562)
• B-lymphoblastoid cells(GM12878)
• hepatocellular carcinoma cells (HepG2)
• umbilical vein endothelial cells (HUVEC)
• skeletal muscle myoblasts (HSMM)
• normal lung fibroblasts (NHLF)
• normal epidermal keratinocytes (NHEK)
• mammary epithelial cells (HMEC)

Ernst et al, Nature, 2011

Scaling up: multiple ChIP datasets 
from multiple species



Zhou et al, Nature Rev. Gen., 2011

“Active Promoter” “Active transcription”

“Active Enhancer”

Histone mark combinations indicate 
gene function

“Repressed Gene”



• Neurog1: Neurogenesis transcription factor
• Pparg: Adipogenesis transcription factor
• Fabp7: Neural progenitor marker

• ES cells: Embryonic stem cells
• NPCs: Neural progenitor cells
• MEFs: Embryonic fibroblasts (muscle)

Binding dynamics across cell types
Active Promoter

Repressed Promoter

Polm: DNA polymerase (gene needed in all cell types)

Mikkelsen et al., Nature 2007

Olig1: Neural transcription factor

Active Promoter

Neural genes repressed in muscle cells



Nine ChIP-seq 
experiments

• CTCF
• H3k27me3
• H3k36me3
• H4k20me1
• H3k4me1
• H3k4me2
• H3k4me3
• H3k27ac
• H3k9ac

Nine human cell types

• embryonic stem cell (H1 ES)
• erythrocytic leukaemia cells (K562)
• B-lymphoblastoid cells(GM12878)
• hepatocellular carcinoma cells (HepG2)
• umbilical vein endothelial cells (HUVEC)
• skeletal muscle myoblasts (HSMM)
• normal lung fibroblasts (NHLF)
• normal epidermal keratinocytes (NHEK)
• mammary epithelial cells (HMEC)

Ernst et al, Nature, 2011

Scaling up: multiple ChIP datasets 
from multiple species

What does the data tell 
us about cell 
differentiation?

Can we automatically 
learn biology’s histone 
code?



● Family of machine learning methods to 
recognize patterns in datasets
○ Includes K-means, hierarchical clustering, self-

organizing maps, and many other methods

Unsupervised Learning

Histone mark co-occurrence and spatial transitions

Hidden Markov Model can capture spatial transitions

We build on a previous 
“ChromHMM” model



One genomic locus: states are organized in tree

What about multiple cell types?

xi
j: observed histone marks (position i, species j)

zi
j: hidden chromatin state (to be inferred)

ES cells

NPCs



A new “TreeHMM” for lineages

Connect 
multiple cell 
types in a tree

Connect adjacent regions 
of the genome



TreeHMM Recap

● Data: M x N x L matrix of binary histone mark 
presence
○ M species, related to each other by a tree
○ N contiguous genomic regions
○ L different histone marks

● Use a Tree Hidden Markov Model to do 
unsupervised learning

● We are given K, the number different histone 
states to find
○ K x L “emission” matrix
○ K x K “transition” matrix for root species
○ K x K x K “transition” matrix for other species



Inference in TreeHMM
● Just one problem: Inferring the hidden state 

in this model is intractable when K or M is 
large (K    state space)

● We use variational methods to 
approximate the model
○ Choose a tractable family of surrogate models, then 

optimize them to look like the more complicated 
model

M

Mean field: Optimize single nodes separately

Structured mean field:
      Optimize complete HMM chains separately

Loopy belief propagation



Structured mean field 
approximates the exact
model very well

K=5, very small dataset

How good are the approximations?





Spatial transitions between states

• Vertical parent specific transition matrix



Strong Enhancer 
(state 5)

Active Promoter
(state 3)

Insulator (CTCF)
(state 14)



Strong Enhancer 
(state 5)

Active Promoter
(state 3)

Insulator (CTCF)
(state 14)

Strong vertical information 
for some states

Enhancer state is 
rarely inherited from 
ES cells



Validation and comparison

● Do our predicted states have any grounding 
in real biology?

● Validate them using a different dataset: 
transcription factor ChIP-seq
○ Record number of recovered TF binding sites
○ Record fold enrichment vs. random overlap with TF 

binding sites
● Compare vs. ChromHMM (like our model, 

but no tree component)



Recovered sites
(thousands)

Fold enrichment

Predicted
Promoters

We predict fewer
 sites with better
 accuracy

Taf1 is part of all cells’
promoter machinery



Recovered sites
(thousands)

Fold enrichment

Predicted
Enhancers

We predict more sites
at better or similar
accuracy



TreeHMM take home messages

● None of this would be possible without 
interesting data and lots of it
○ In several organisms, there are many new datasets 

doing comprehensive surveys of biological function
● Extending models toward real biology is 

worth it
○ Can lead to improved accuracy and new insights
○ Machine Learning has tools for many more models 

than now employed in biology



AREM

What if we don’t have a 
reference genome?

Distributed database for 
genome assembly

TreeHMM

Genomix



No reference genome?
● For most analyses, we use the standard 

“reference” genome
○ Many organisms don’t have a reference
○ Others have a poor quality reference
○ Some samples are too different from the reference

■ Cancer genomes are genetically unstable, 
subject to “genome shattering”

● Low cost of sequencing makes it feasible to 
do de novo assembly using HTS reads
○ Human genome cost ~$3 billion and 10 years, 

finishing in 2003
○ Done today in a few weeks for a few thousand 

dollars



Genome Assembly
(1st Approximation)

ACTGCA

 TTCAACA
ACTGCA

   CCAAAC

ACTGCA

 TTCAACA
ACTGCA

   CCAAAC

ACTGCA

 TTCAACA
ACTGCA

   CCAAAC

ACTGCA

 TTCAACA
ACTGCA

   CCAAAC

ACTGCA

 TTCAACA
ACTGCA

   CCAAAC

Extraction, sonication

High-Throughput
Sequencing

Assembly

hundreds of millions
of fragments



Overlap Graphs

● Find prefix/suffix overlaps between all reads

...ACTGAATCTAGGTCTGCGT
GTCTGCGTACCCTACGTCTGACTGC CGCGGCAA

CGCGGCAAACGGCTAGCTGTGTTTTTACT TCTTTGA
TCTTTGACCA...

TCTTTGATTC...

● Form a graph where the reads are nodes 
and overlaps are edges

● Find a Hamiltonian path through the graph 
(touching all nodes once)



De Bruijn Graphs
...ACTGAATCTAGGC

● Form a graph where all Kmers of the reads 
are nodes and edges correspond to 
shared K-1mers

● Find an Eulerian path through the graph 
(touching all edges once)

...CCTCTAGGGTGC

Repeated kmers are collapsed 
into a single node



Pros and Cons

Overlap Graph:
● Requires comparison 

between all reads
● Hamiltonian path is 

harder than Eulerian
● Errors detected via 

consensus sequences
● Can handle repeats 

shorter than read length
● Mostly suited for a few, 

long reads

De Bruijn Graph:
● Scales with complexity of 

genome, not # of reads*
● Many errors show as 

unique graph structures
● Error identification is 

critical
● Without additional work, 

handles only repeat < K
● Well-suited for many 

short, low-quality reads

* except for errors...



Our goal: 
scalable de Bruijn graph assembly

Algorithm Genome Size

Small Medium Large

Velvet ✓✓ ✓ ✗

ABySS ✓ ✓ ✓

Ray ✓ ✓ ✓

Contrail ✗ ✓ ✓

Genomix ✓ ✓✓ ✓✓

If you have 
enough memory



Interlude: a different revolution
● Storage is cheap and everything is recorded

○ Social network data, browsing/shopping history, 
search terms, retail information

● Traditionally, all this would be kept in large 
databases for easy query
○ Now, the data can’t fit on one machine

● Demand for scalable alternatives
○ Google revealed MapReduce and GFS papers 

(internet scale)
○ Hadoop (open source) soon followed

In 2013, 
50% of Fortune 50



Scalable algorithms need scalable frameworks

● Hyracks: efficient and flexible alternative to 
Hadoop
○ Seamless use of available memory and disk space
○ Additional operators, index structures
○ Brings relational DB concepts to the cloud

● Pregelix: scalable graph algorithms
○ Hyracks-based open source Pregel implementation 
○ Handles all scheduling, network,

message handling, etc
○ Think like a vertex

http://www.cs.washington.edu/mssi/2010/MikeCarey.pdf K-means clustering in the cloud



Hyracks stack
Hyracks

Filesystem abstraction:   Shared-nothing, HDFS, NFS, etc.

Genomix
Build graphGraph algorithms



De Bruijn graph of the 
small genome of E. coli 
after error correction

Chaisson et al., Genome Research 2009



Sequencing Errors (Bubble Merge)

● Breadth-first search identifies common paths
● Extract and compare path sequences 
● When paths are similar, prune “worst” one



Graph Compression

● We can collapse long chains of nodes into 
single nodes representing long chains
○ All later operations will take fewer iterations

H

● Use a randomized algorithm to coordinate 
nodes

T T

H H TT



Graph Compression

● We can collapse long chains of nodes into 
single nodes representing long chains
○ All later operations will take fewer iterations

● Use a randomized algorithm to coordinate 
nodes



Scaffolding

● Use the reads to guide a growing path

single error read connects 
the walk incorrectly

“high-confidence” region
Check all candidate
paths out to a certain
distance D

candidate path reads have mutual
overlap with walk



Scaffolding

● Use the reads to guide a growing path

One set of edges must dominate the other 
for the walk to proceed

✗



Timings: Small Genomes
Hadoop-based Contrail lags behind

Velvet is super fast
Ray is another parallel framework
for de Bruijn graph assembly



With Human Genome
same figure… with a larger genome

Ray requires ~450GB RAM
 across machines

Velvet is a no-show…
Some groups reported
assembling a human 
genome with 2TB RAM...

Genomix has no 
memory constraints, 
though having it will
 speed up computation



Assembly Accuracy



Assembly is tough, but at least you 
can scale up!

● Assembly was once relegated to small 
bacterial genomes

● Dropping costs and better tech are making 
assembly available to much larger genomes
○ Important for understudied organisms
○ Important for cancers and other diseases where 

genome structure is affected
● Don’t need huge servers w/ beefy RAM

○ Small clusters will do the job (rent them on EC2!)



Recap

● Three algorithms 
leveraging HTS data in 
different ways
○ AREM enables analysis in repetitive regions of the 

genome
○ TreeHMM synthesizes multiple datasets in related cell 

types to better annotate the genome
○ Genomix applies when the reference is inadequate or 

unavailable and provides a scalable solution to assembly
● HTS requires solid computational models and algorithms to 

be successful



Exciting time to be in biology!

● Costs continue to drop, quality is increasing
● New experimental methods are revealing 

comprehensive, in-depth biology at scales 
we’ve never seen before

● Computational methods are required to 
overcome errors, but also to model biological 
realities



Acknowledgements

TreeHMM AREM Genomix





Min Score and performance



How many chromatin states?
Apply tree-HMM to the Broad dataset 
(9 chromatin modification in 9 cell types):

Model selection: AIC (Akaike information criterion), BIC (Bayesian information criterion)

The optimal 
number of 
states is 18  by 
BIC. 



erythrocytic 
leukaemia

skeletal 
muscle 

myoblasts

mammary 
epithelial 

cells

normal 
epidermal 

keratinocytes

umbilical 
vein 

endothelial 
cells

H1-ES 
cells

A Simple Lineage Tree








